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Abstract
Aim:	Large	tropical	 trees	 form	the	 interface	between	ground	and	airborne	observa‐
tions,	offering	a	unique	opportunity	to	capture	forest	properties	remotely	and	to	inves‐
tigate	their	variations	on	broad	scales.	However,	despite	rapid	development	of	metrics	
to	characterize	the	forest	canopy	from	remotely	sensed	data,	a	gap	remains	between	
aerial	and	field	inventories.	To	close	this	gap,	we	propose	a	new	pan‐tropical	model	to	
predict	plot‐level	forest	structure	properties	and	biomass	from	only	the	largest	trees.
Location:	Pan‐tropical.
Time period:	Early	21st	century.
Major taxa studied:	Woody	plants.
Methods:	Using	a	dataset	of	867	plots	distributed	among	118	sites	across	the	tropics,	
we	tested	the	prediction	of	the	quadratic	mean	diameter,	basal	area,	Lorey’s	height,	
community	wood	density	and	aboveground	biomass	(AGB)	from	the	ith	largest	trees.
Results:	Measuring	the	largest	trees	in	tropical	forests	enables	unbiased	predictions	of	
plot‐	and	site‐level	forest	structure.	The	20	largest	trees	per	hectare	predicted	quad‐
ratic	mean	diameter,	basal	 area,	 Lorey’s	height,	 community	wood	density	 and	AGB	
with	12,	16,	4,	4	and	17.7%	of	relative	error,	respectively.	Most	of	the	remaining	error	
in	biomass	prediction	is	driven	by	differences	in	the	proportion	of	total	biomass	held	
in	medium‐sized	trees	(50–70	cm	diameter	at	breast	height),	which	shows	some	conti‐
nental	dependency,	with	American	tropical	forests	presenting	the	highest	proportion	
of	total	biomass	in	these	intermediate‐diameter	classes	relative	to	other	continents.
Main conclusions:	Our	approach	provides	new	information	on	tropical	forest	struc‐
ture	and	can	be	used	to	generate	accurate	field	estimates	of	tropical	forest	carbon	
stocks	 to	 support	 the	 calibration	 and	 validation	of	 current	 and	 forthcoming	 space	
missions.	It	will	reduce	the	cost	of	field	inventories	and	contribute	to	scientific	under‐
standing	of	tropical	forest	ecosystems	and	response	to	climate	change.

K E Y W O R D S

carbon,	climate	change,	forest	structure,	large	trees,	pan‐tropical,	REDD+,	tropical	forest	ecology
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1  | INTRODUC TION

The	 fundamental	 ecological	 function	 of	 large	 trees	 is	 well	 estab‐
lished	 for	 tropical	 forests.	 They	 offer	 shelter	 to	 many	 organisms	
(Lindenmayer,	Laurance,	&	Franklin,	2012;	Remm	&	Lõhmus,	2011),	
regulate	 forest	 dynamics,	 regeneration	 (Harms,	Wright,	 Calderón,	
Hernández,	&	Herre,	2000;	Rutishauser,	Wagner,	Herault,	Nicolini,	&	
Blanc,	2010)	and	total	biomass	(Stegen	et	al.,	2011),	and	are	import‐
ant	contributors	 to	 the	global	 carbon	cycle	 (Meakem	et	al.,	2018).	
Being	major	components	of	the	canopy,	the	largest	trees	may	also	
suffer	more	 than	 sub‐canopy	 and	 understorey	 trees	 from	 climate	
change,	because	they	are	directly	exposed	to	variations	in	solar	radi‐
ation,	wind	strength,	temperature	seasonality	and	relative	air	humid‐
ity	(Bennett,	McDowell,	Allen,	&	Anderson‐Teixeira,	2015;	Laurance,	
Delamônica,	Laurance,	Vasconcelos,	&	Lovejoy,	2000;	Lindenmayer	
et	al.,	2012;	Meakem	et	al.,	2018;	Nepstad,	Tohver,	Ray,	Moutinho,	
&	Cardinot,	2007;	Thomas,	Kellner,	Clark,	&	Peart,	2013).	Given	that	
they	are	visible	from	the	sky,	large	trees	are	ideal	for	monitoring	for‐
est	responses	to	climate	change	via	remote	sensing	(RS;	Asner	et	al.,	
2017;	Bennett	et	al.,	2015).

Large	trees	encompass	a	disproportionate	fraction	of	total	abo‐
veground	biomass	 (AGB)	 in	 tropical	 forests	 (Chave,	Riera,	Dubois,	
&	Riéra,	2001;	Lutz	et	al.,	2018),	with	some	variations	 in	their	 rel‐
ative	 contribution	 to	 the	 total	 AGB	 among	 the	 tropical	 regions	
(Feldpausch	et	al.,	2012).	In	Central	Africa,	the	largest	5%	of	trees	in	
a	forest	sample	plot	(i.e.,	the	5%	of	trees	with	the	largest	diameter	
at	130	cm)	store	50%	of	 forest	plot	AGB	on	average	 (Bastin	et	al.,	
2015).	Consequently,	the	density	of	large	trees	largely	explains	vari‐
ation	in	forest	AGB	at	local	(Clark	&	Clark,	1996),	regional	(Malhi	et	
al.,	2006;	Saatchi,	Houghton,	Dos	Santos	Alvalá,	Soares,	&	Yu,	2007)	
and	continental	scales	(Slik	et	al.,	2013;	Stegen	et	al.,	2011).	Detailing	
the	contribution	of	each	 single	 tree	 to	 the	diameter	 structure,	we	
showed	previously	that	plot‐level	AGB	can	be	predicted	from	a	few	
large	trees	(Bastin	et	al.,	2015),	with	the	measurement	of	the	20	larg‐
est	trees	per	hectare	being	sufficient	to	estimate	plot‐level	biomass	
with	<	15%	error	 in	reference	to	ground	estimates.	These	findings	
suggested	 that	 a	 substantial	 gain	 of	 cost‐effectiveness	 might	 be	
achieved	by	focusing	forest	 inventories	on	the	 largest	trees	rather	
than	all	size	classes.	Likewise,	it	suggested	that	RS	approaches	could	
focus	on	the	measurement	of	the	largest	trees,	instead	of	properties	
of	the	entire	forest	stand.

Several	efforts	are	underway	to	close	the	gap	between	RS	of	
forest	biomass	and	field	surveys	(Coomes	et	al.,	2017;	Jucker	et	al.,	
2017).	However,	existing	RS	approaches	typically	require	ground	
measurement	 of	 all	 trees	 ≥	10	cm	 in	 diameter	 (D)	 for	 calibration	
(Asner	&	Mascaro,	2014;	Asner	et	al.,	2012).	Collecting	such	data	
in	 the	 field	 is	 costly	 and	 time	 consuming,	which	 therefore	 limits	
the	spatial	representativeness	of	available	plot	networks.	Besides,	
extrapolation	methods	 of	 ground‐based	 biomass	 estimations	 on	
RS	data	still	 face	 important	 limits.	For	 instance,	using	mean	can‐
opy	 height	 extracted	 from	 active	 sensors	 (Ho	Tong	Minh	 et	 al..,	
2016;	Mascaro,	Detto,	Asner,	&	Muller‐Landau,	2011)	or	canopy	
grain	 derived	 from	optical	 images	 (Bastin	 et	 al.,	 2014;	 Ploton	 et	

al.,	 2017;	 Ploton,	 Pélissier,	 &	 Proisy,	 2012;	 Proisy,	 Couteron,	 &	
Fromard,	2007),	the	biomass	is	predicted	with	an	error	of	only	10–
20%	compared	with	ground‐based	estimates.	However,	this	good	
level	 of	 accuracy	 is	 limited	 to	 the	 extent	 of	 the	 RS	 scene	 used,	
which	decreases	considerably	in	the	upscaling	step	necessary	for	
national	or	global	maps	(Xu	et	al.,	2017).	A	promising	development	
to	alleviate	this	spatial	restriction	lies	in	the	‘universal	approach’,	
proposed	 by	 Asner	 et	 al.	 (2012)	 and	 further	 adapted	 by	 Asner	
and	Mascaro	 (2014),	 in	which	 plot‐level	 biomass	 is	 predicted	 by	
a	 linear	 combination	of	ground‐based	and	 remotely	 sensed	met‐
rics.	 The	 ‘universal	 approach’	 relies	 upon	 canopy	 height	metrics	
derived	from	radar	or	LiDAR	(top	of	canopy	height,	TCH),	and	basal	
area	(BA;	i.e.,	the	cumulated	cross‐sectional	area	of	the	stems)	and	
community	wood	density	(i.e.,	weighted	by	basal	area,	WDBA)	de‐
rived	from	field	inventories.	Plot	AGB	is	then	predicted	as	follows	
(Asner	et	al.,	2012):

Although	 generally	 performing	 better	 than	 approaches	 based	
solely	on	RS	of	tree	height	(Coomes	et	al.,	2017),	this	model	relies	on	
exhaustive	ground	measurements	(i.e.,	wood	density	and	the	basal	
area	of	all	trees	>	10	cm	in	diameter	at	130	cm,	neither	of	which	is	
measured	using	any	existing	remotely	sensed	data).

Recent	 advances	 in	 RS	 allow	 the	 identification	 of	 single	 trees	
in	 the	 canopy	 (Ferraz,	 Saatchi,	Mallet,	&	Meyer,	 2016),	 estimation	
of	adult	mortality	rates	for	canopy	tree	species	(Kellner	&	Hubbell,	
2017),	 description	 of	 the	 forest	 diameter	 structure	 (Stark	 et	 al.,	
2015),	depiction	of	crown	and	gap	shapes	(Coomes	et	al.,	2017)	and	
even	the	identification	of	some	functional	traits	of	canopy	species	
(Asner	et	al.,	2017).	Given	that	routine	retrieval	of	some	canopy	tree	
metrics	is	within	reach,	in	the	present	study	we	test	the	capacity	of	
the	largest	trees	(i.e.,	trees	that	can	potentially	be	derived	using	RS),	
to	predict	plot‐level	biomass.	To	this	end,	we	adapted	Equation	(1)	
as	follows:

where	for	the	ith	largest	trees,	DgLT	is	the	quadratic	mean	diameter,	
HLT	the	mean	height,	and	WDLT	the	mean	wood	density	among	the	
ith	largest	trees.

Using	 a	 large	 database	 of	 forest	 inventories	 gathered	 across	
the	tropics	(Figure	1),	 including	secondary	and	old‐growth	forest	
plots,	 we	 test	 the	 ability	 of	 the	 largest	 trees	 to	 predict	 various	
metrics	 estimated	at	1‐ha	plot	 level,	 namely	 the	mean	quadratic	
diameter,	 the	 basal	 area,	 the	 Lorey’s	 height	 (i.e.,	 plot‐average	
height	weighted	by	basal	area),	the	community	wood	density	(i.e.,	
plot‐average	 wood	 density	 weighted	 by	 basal	 area)	 and	 mean	
aboveground	 live	 biomass	 (Supporting	 Information	 Figure	 1).	 By	
testing	 different	 numbers	 of	 largest	 trees	 as	 predictors,	we	 aim	
to	 propose	 a	 threshold	 for	 the	minimal	 number	 of	 largest	 trees	
required	to	predict	forest	plot	metrics	at	a	pan‐tropical	level	with	
no	bias	and	low	uncertainty	(i.e.,	error	<	20%).	Although	previous	
work	 focused	 on	 estimating	 biomass	 in	 Central	 African	 forests	
(Bastin	 et	 al.,	 2015),	 the	 present	 study	 aims	 at	 generalizing	 the	

(1)AGB= aTCH
b1
BA

b2
WD

b3

BA

(2)AGB= a(DgLTiHLTiWDLTi)
b1
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potential	of	 large	trees	 to	predict	 these	different	plot	metrics	at	
continental	and	pan‐tropical	scales.	Taking	advantage	of	a	unique	
dataset	gathered	across	the	tropics	(867	1‐ha	plots),	we	also	inves‐
tigate	major	differences	in	forest	structure	across	the	three	main	
tropical	regions:	the	Americas,	Africa	and	Asia.	We	further	discuss	
how	this	approach	can	be	used	to	guide	innovative	RS	techniques	
and	increase	the	frequency	and	representativeness	of	ground	data	
to	support	global	calibration	and	validation	of	current	and	planned	
space	 missions.	 These	 include	 the	 NASA	 Global	 Ecosystem	
Dynamics	 Investigation	 (GEDI),	 NASA‐ISRO	 Synthetic	 Aperture	
Radar	(NISAR)	and	ESA	P‐band	radar	(BIOMASS)	(Dubayah	et	al.,	
2014;	Le	Toan	et	al.,	2011).	This	study	is	a	step	forwards	in	bring‐
ing	together	RS	and	field	sampling	techniques	for	quantification	of	
terrestrial	carbon	stocks	in	tropical	forests.

2  | MATERIAL S AND METHODS

2.1 | Database

For	this	study,	we	compiled	standard	forest	inventories	conducted	
in	867	1‐ha	plots	from	118	sites	across	the	three	tropical	regions	
(Figure	1),	including	mature	and	secondary	forests.	Each	site	com‐
prises	all	 the	plots	 in	a	given	geographical	 location	 (i.e.,	within	a	
10‐km	 radius	 and	 collected	 by	 a	 principal	 investigator	 and	 their	
team).	 These	 consisted	 of	 389	 plots	 in	 America	 (69	 sites),	 302	
plots	in	Africa	(35	sites)	and	176	plots	in	Asia	(14	sites).	Data	were	
provided	 by	 principal	 investigators	 (see	 Supporting	 Information	
Table	 1)	 and	 through	 datasets	 available	 on	 the	 following	 net‐
works:	TEAM,	CTFS	(www.forestgeo.si.edu/;	Condit	et	al.,	2012)	
and	 ForestPlots	 (https://www.forestplots.net/)	 for	 AfriTRON	
(the	 African	 Tropical	 Rainforest	 Observation	 Network;	 www.af‐
ritron.org)	and	RAINFOR	(the	Amazon	forest	 inventory	network;	
networks.

We	 selected	 plots	 located	 between	 23°	N	 and	 23°	S,	 in‐
cluding	 tropical	 islands,	with	 an	 area	 of	 1	ha	 to	 ensure	 stable	
intra‐sample	variance	in	basal	area	(Clark	&	Clark,	2000).	Plots	
in	which	≥	90%	of	 the	stems	were	 identified	 to	species	and	 in	
which	 all	 stems	 with	 the	 diameter	 at	 130	cm	 of	 ≥	10	cm	 had	

been	measured	were	included.	Wood	density,	here	recorded	as	
the	wood	dry	mass	divided	by	its	green	volume,	was	assigned	to	
each	tree	using	the	 lowest	available	taxonomic	 level	of	botan‐
ical	 identifications	 (i.e.,	 species	or	genus)	and	 the	correspond‐
ing	average	wood	density	recorded	in	the	Global	Wood	Density	
Database	 (GWDD;	 Chave	 et	 al.,	 2009;	 Zanne	 et	 al.,	 2009).	
Botanical	identification	was	harmonized	through	the	Taxonomic	
Names	Resolution	Service	(https://tnrs.iplantcollaborative.org),	
for	both	plot	 inventories	and	the	GWDD.	For	trees	not	 identi‐
fied	 to	 species	 or	 genus	 (ca.	5%),	 we	 used	 plot‐average	 wood	
density.	We	estimated	heights	 of	 all	 trees	 using	Chave	 et	 al.’s	
(2014)	pan‐tropical	diameter–height	model,	which	accounts	for	
heterogeneity	 in	 the	D–H	 relationship	 using	 an	 environmental	
proxy:

where	D	is	the	diameter	at	130	cm	and	E	is	a	measure	of	environmen‐
tal	stress	(Chave	et	al.,	2014).	For	sites	with	tree	height	measurements	
(n	=	20),	we	developed	 local	D–H	models,	 using	 a	Michaelis–Menten	
function	(Molto	et	al.,	2014).	We	used	these	local	models	to	validate	the	
predicted	Lorey’s	height	(i.e.,	plot‐average	height	weighted	by	BA)	from	
the	 largest	 trees,	of	which	height	has	been	estimated	with	a	generic	
H–D	model	[Equation	(3),	Chave	et	al.,	2014].

We	estimated	plot	biomass	as	the	sum	of	the	biomass	of	live	tree	
with	diameter	at	130	cm	of	≥	10	cm,	using	the	following	pan‐trop‐
ical	 allometric	 model	 (Réjou‐Méchain,	 Tanguy,	 Piponiot,	 Chave,	 &	
Hérault,	2017):

2.2 | Plot‐level metric estimation from the 
largest trees

The	relationship	between	each	plot	metric,	namely	basal	area	(BA),	
the	 quadratic	 mean	 diameter	 (Dg),	 Lorey’s	 height	 (HBA; the	 mean	
height	weighted	by	the	basal	area)	and	the	community	wood	den‐
sity	(WDBA;	the	mean	wood	density	weighted	by	the	basal	area),	and	

(3)Ln(H)=0.893−E+0.760ln
(

D
)

−0.0340ln
(

D
)2

(4)
AGB=exp

{

−2.024−0.896E+0.920ln
(

WD
)

+2.795ln
(

D
)

−0.0461
[

ln
(

D
2
)]

}

F I G U R E  1  Geographical	distribution	of	the	plot	database.	We	used	867	plots	of	1	ha	from	118	sites.	Dots	are	coloured	according	to	
floristic	affinities	(Slik	et	al.,	2015),	with	America,	Africa	and	Asia	in	orange,	green	and	blue,	respectively.	They	are	also	sized	according	the	
total	area	surveyed	in	each	site.	In	the	background,	moist	forests	are	displayed	in	dark	green	and	dry	forest	in	light	green

https://www.forestgeo.si.edu/
https://www.forestplots.net/
www.afritron.org
www.afritron.org
https://tnrs.iplantcollaborative.org
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those	derived	from	largest	trees	was	determined	using	an	iterative	
procedure	following	Bastin	et	al.	(2015).	Trees	were	first	ranked	by	
decreasing	diameter	in	each	plot.	An	incremental	procedure	(i.e.,	in‐
cluding	a	new	tree	at	each	step)	was	used	to	sum	or	average	informa‐
tion	of	the	i	largest	trees	for	each	plot	metric.	Each	plot‐level	metric	
was	predicted	by	the	respective	metric	derived	from	the	ith	largest	
trees.	For	each	increment,	the	ability	(goodness	of	fit)	of	the	i larg‐
est	trees	to	predict	a	given	plot	metric	was	tested	through	a	linear	
regression.	To	avoid	overfitting,	a	leave‐one‐out	procedure	was	used	
to	develop	 independent	site‐specific	models	 (n	=	118).	Specifically,	
the	model	 to	be	 tested	at	a	site	was	developed	with	data	 from	all	
other	 sites.	 Errors	were	 then	 estimated	 as	 the	 relative	 root	mean	
square	 error	 (rRMSE)	 computed	 between	 observed	 and	 predicted	
values	(X):

The	form	of	the	regression	model	(ie,	linear,	exponential)	was	se‐
lected	to	ensure	a	normal	distribution	of	the	residuals.

To	 estimate	 plot	 basal	 area,	we	 used	 a	 simple	 power‐law	 con‐
strained	on	the	origin,	as	linear	model	resulted	in	non‐normal	resid‐
uals.	Plot‐level	basal	area	(BA)	was	related	to	the	basal	area	for	the	i 
largest	trees	(BAi)	using:

To	estimate	the	quadratic	mean	diameter,	Lorey’s	height	and	the	
wood	density	of	 the	community,	we	used	simple	 linear	models	re‐
lating	 the	plot‐level	metrics	 and	 the	value	of	 the	metrics	 for	 the	 i 
largest	trees:

Both	 Lorey’s	 height	 (HBA)	 and	 the	 average	 height	 (Hi )	 of	 the	
ith	 largest	 trees	 depend	 on	 the	 same	D–H	 allometry,	 which	 al‐
ways	contains	uncertainty	whether	we	use	a	 local,	a	continental	
or	a	pan‐tropical	model.	To	test	the	dependence	of	the	prediction	 
of	 HBA	 on	 the	 allometric	 model,	 we	 used	 measurement	 from	
Malebo	in	the	Democratic	Republic	of	the	Congo,	where	all	heights	 
were	 measured	 on	 the	 ground	 (see	 Supporting	 Information	
Figure	2).

The	 quality	 of	 the	 predictions	 of	 plot‐level	 metrics	 from	 the	
largest	trees	is	quantified	using	the	rRMSE	between	measured	and	
predicted	values	and	displayed	along	the	cumulated	number	of	larg‐
est	trees.	Model	coefficients	are	estimated	for	each	metric	derived	
from	the	largest	trees	(NLT)	and	averaged	across	the	118	models	(see	
Supporting	Information	Table	2).

Mean	rRMSE	is	plotted	as	a	continuous	variable,	and	its	variation	
is	presented	as	a	continuous	area	between	the	5th	and	the	95th	per‐
centiles	of	observed	rRMSE.

2.3 | The optimal number of largest trees for plot‐
level biomass estimation

The	optimal	number	of	largest	trees,	NLT,	was	determined	from	the	pre‐
diction	of	each	plot‐level	metric	considered	above	(i.e.,	keeping	a	small	
number	of	trees	while	ensuring	a	low	level	of	error	for	each	structural	
parameter).	We	then	predicted	plot‐level	biomass	from	the	NLT model 
[Equation	(2)].	The	final	error	was	calculated	by	propagating	the	entire	
set	of	errors	related	to	Equation	(4)	(Réjou‐Méchain	et	al.,	2017)	in	the	
NLT	model	(i.e.,	error	associated	with	each	allometric	model	used).	The	
model	was	then	cross‐validated	across	all	plots	(n	=	867).

2.4 | Investigating residuals: What the largest trees 
do not explain

To	understand	the	limits	of	predicting	AGB	through	NLT,	we	also	in‐
vestigated	the	relationship	between	AGB	residuals	and	key	structural	
and	environmental	variables	using	 linear	modelling.	Forest	structure	
was	 investigated	 through	 the	 total	 stem	 density	 (N),	 the	 quadratic	
mean	diameter	(Dg),	Lorey’s	height	(HBA)	and	community	wood	den‐
sity	(WBBA).	As	environmental	data,	we	used	the	mean	annual	rainfall	
and	the	mean	temperature	computed	over	the	 last	10	years	at	each	
site	 using	 the	 Climate	 Research	 Unit	 data	 (New	 et	 al.,	 1999;	 New,	
Lister,	Hulme,	&	Makin,	2002),	along	with	rough	 information	on	soil	
types	(Carré,	Hiederer,	Blujdea,	&	Koeble,	2010).	Major	soil	types	were	
computed	 from	the	soil	classification	of	 the	Harmonized	World	Soil	
Database	into	IPCC	(Intergovernmental	Panel	on	Climate	Change)	soil	
classes.	In	addition,	considering	observed	differences	in	forest	struc‐
ture	 across	 tropical	 continents	 (Feldpausch	 et	 al.,	 2011,	 2012)	 and	
recent	results	on	pan‐tropical	floristic	affinities	(Slik	et	al.,	2015),	we	
tested	for	an	effect	of	continent	(America,	Africa	and	Asia)	on	the	AGB	
residuals.	Differences	in	forest	structure	and	AGB	among	continents	
were	also	illustrated	through	the	analysis	of	their	distribution.

The	importance	of	each	variable	was	evaluated	by	calculating	the	
type	II	sum	of	squares,	which	measures	the	decrease	in	residual	sum	of	
squares	owing	to	an	added	variable	once	all	the	other	variables	have	
been	introduced	into	the	model	(Langsrud,	2003).	Residuals	were	in‐
vestigated	at	both	plot	and	site	levels,	the	latter	analysed	to	test	for	
any	 influence	of	the	diameter	structure,	which	 is	usually	unstable	at	
the	plot	level	owing	to	the	dominance	of	large	trees	on	forest	metrics	
at	small	scales	(Clark	&	Clark,	2000).	Here,	we	use	a	principal	compo‐
nents	analysis	(PCA)	to	summarize	the	information	held	in	the	diameter	
structure	by	ordinating	the	sites	along	the	abundance	of	trees	in	each	
diameter	class	(from	10	to	+100	cm	in	10	cm	bins).

3 | RESULTS

3.1 | Plot‐level metrics

Plot	metrics	averaged	at	 the	site	 level	 (867	plots,	118	sites)	pre‐
sent	 important	variations	within	and	between	continents.	 In	our	
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database,	the	quadratic	mean	diameter	varies	from	15	to	42	cm2/
ha,	the	basal	area	from	2	to	58	m2/ha,	Lorey’s	height	from	11	to	
33	m,	and	the	wood	density	weighted	by	the	basal	area	from	0.48	
to	0.84	g/cm3	 (Supporting	 Information	Figure	1).	Such	 important	
differences	 between	 minimal	 and	 maximal	 values	 are	 observed	
because	our	database	covers	sites	with	various	forest	types,	from	
young	forest	colonizing	savannas	to	old‐growth	forest.	However,	

most	of	our	sites	are	found	in	mature	forests,	as	shown	by	the	rela‐
tively	high	average	and	median	value	of	each	plot	metric	(average	
AGB	=	302	Mg/ha;	Supporting	 Information	Figure	1).	 In	general,	
highest	values	of	AGB	are	found	 in	Africa,	driven	by	the	highest	
values	of	basal	area	and	highest	estimations	of	Lorey’s	height.	The	
highest	values	of	wood	density	weighted	by	basal	area	are	found	
in	America.

F I G U R E  2  Quality	of	the	prediction	of	plot	metrics	from	largest	trees.	Variation	of	the	relative	root	mean	square	error	(rRMSE)	of	the	
prediction	of	plot	metric	from	i	largest	trees	versus	the	cumulative	number	of	largest	trees	for:	(a)	basal	area,	(b)	quadratic	mean	diameter,	(c)	
Lorey’s	height,	and	(d)	wood	density	weighted	by	the	basal	area.	Results	are	displayed	at	the	pan‐tropical	level	(main	plot	in	grey)	and	at	the	
continental	level	(subplots;	orange	=	America;	green	=	Africa;	blue	=	Asia).	The	continuous	line	and	shading	shows	the	mean	rRMSE	and	the	
5th	and	95th	percentiles.	Dashed	lines	represent	the	mean	rRMSE	observed	for	each	model,	when	considering	the	20	largest	trees
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3.2 | Plot‐level estimation from the i largest trees

Overall,	plot	metrics	at	the	1‐ha	scale	were	well	predicted	by	the	
largest	 trees,	with	qualitative	 agreement	 among	global	 and	 con‐
tinental	 models	 (Figure	 2).	 When	 using	 the	 20	 largest	 trees	 to	
predict	 basal	 area	 (BA)	 and	 quadratic	 mean	 diameter	 (Dg),	 the	
mean	rRMSE	was	<	16	and	12%,	respectively	(Figure	3a,b).	Lorey’s	
height	 (HBA)	 and	 wood	 density	 weighted	 by	 basal	 area	 (WDBA)	
were	even	better	predicted	(Figure	3c,d),	with	mean	rRMSE	of	4%	
for	the	20	largest	trees.	The	prediction	of	Lorey’s	height	from	the	
largest	 trees	 using	 the	 local	 diameter–height	model	 (Supporting	
Information	 Figure	 2a)	 yielded	 results	 similar	 to	 those	 obtained	
using	Equation	(3)	of	Chave	et	al.	(2014).	More	importantly,	it	also	

yielded	similar	results	to	the	prediction	of	Lorey’s	height	from	the	
largest	trees	using	plots	where	all	the	trees	were	measured	on	the	
ground	(Supporting	Information	Figure	2b).	This	suggests	that	our	
conclusions	are	robust	to	the	uncertainty	introduced	by	height–di‐
ameter	allometric	models.

3.3 | Aboveground biomass prediction from the 
largest trees

We	selected	20	as	the	number	of	largest	trees	to	predict	plot	met‐
rics.	The	resulting	model	predicting	AGB	(in	megagrams	per	hectare)	
based	on	the	20	largest	trees	is:

F I G U R E  3  Prediction	of	plot	metrics	(y	axis)	from	the	20	largest	trees	(x	axis).	Results	are	shown	for:	(a)	basal	area,	(b)	quadratic	mean	
diameter,	(c)	Lorey’s	height,	and	(d)	wood	density	weighted	by	the	basal	area.	Each	dot	corresponds	to	a	single	plot,	coloured	in	orange,	green	
and	blue	for	America,	Africa	and	Asia,	respectively.	Both	pan‐tropical	(black	dashed	lines)	and	continental	(coloured	lines)	regression	models	
are	displayed.	These	results	show	that	a	substantial	part	of	the	remaining	variance	(i.e.,	not	explained	by	the	largest	trees)	is	found	when	
predicting	the	basal	area	and	the	quadratic	mean	diameter,	with	slight	but	significant	differences	between	continents
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Given	 that	 the	exponent	was	 close	 to	one,	we	also	developed	
an	alternative	and	more	operational	model	with	the	exponent	con‐
strained	to	one,	given	by:

Ground	measurements	 of	 plot	 AGB	were	 predicted	 by	 our	NLT 
model	with	 the	 exponent	 constrained	 to	 one,	with	 a	 total	 error	 of	
17.9%	(Figure	4),	a	value	which	encompasses	the	error	of	the	NLT model 
and	the	error	related	to	the	allometric	model	chosen.	The	leave‐one‐
out	cross‐validation	procedure	yielded	similar	results	(rRMSE	=	0.19;	
R2	=	0.81),	validating	the	use	of	the	model	on	independent	sites.

3.4 | Determining the cause of residual variations

The	explanatory	variables	all	together	explain	ca.	37%	of	the	vari‐
ance	in	AGB	at	both	plot	and	site	levels	when	omitting	the	diam‐
eter	structure,	and	ca.	63%	at	site	level	when	included	(Figure	5).	
In	general,	forest	structure	and	particularly	the	stem	density	ex‐
plained	most	of	the	residuals	(Table	1;	weights:	79	and	54%	at	plot	
and	site	level,	respectively).	The	stem	density	was	followed	by	a	
continental	 effect	 (weights:	 18,	 28	 and	 1%	 for	 Africa,	 America	
and	Asia,	 respectively)	 and	by	 the	effect	of	HBA	and	WDBA	 (re‐
spective	weights:	1	and	0%	at	the	plot	level,	0	and	11%	at	the	site	

level,	and	23	and	0%	when	accounting	for	the	diameter	structure	
at	the	site	level).	Inclusion	of	the	diameter	structure	provided	the	
best	 explanation	 of	 residuals,	 with	 63%	 of	 variance	 explained,	
and	 a	 weight	 of	 69%	 for	 the	 first	 axis	 of	 the	 PCA	 (Supporting	
Information	Figure	3).	 This	 first	 axis	 of	 the	PCA	was	 related	 to	
the	 general	 abundance	of	 trees	 at	 a	 site,	 and	 in	 particular,	me‐
dium‐sized	 trees	 (40–60	cm).	 Among	 environmental	 variables,	
only	rainfall	was	significantly	related	to	the	residuals	at	the	site	
level	when	the	diameter	structure	was	considered	(2%).

3.5 | Differences among continents

Although	diameter	structure	explained	a	large	fraction	of	the	re‐
sidual	variance	of	our	global	model,	there	was	a	marked	difference	
in	 forest	 structure	 across	 continents	 (Figure	 6).	 Consequently,	
we	 investigated	 differences	 between	 continents	 in	 the	 distri‐
bution	 of	 residuals	 of	 the	 pan‐tropical	model	 (Figure	 6a),	 in	 the	
relative	contribution	of	the	20	largest	trees	to	plot	total	biomass	
(Figure	6b)	and	in	the	contribution	to	the	total	AGB	per	diameter	
class	(Figure	6c–f).	To	this	end,	we	considered	the	following	four	
classes	of	diameter	at	130	cm:	10–30,	30–50,	50–70	and	>	70	cm.	
The	results	show	that	the	prediction	of	biomass	from	the	20	larg‐
est	trees	using	the	pan‐tropical	model	tends	to	be	slightly	overes‐
timated	in	Africa	(+3%)	and	underestimated	in	America	(−3%)	and	
in	Asia	(−5%)	(Figure	6a).	The	proportion	of	biomass	is	higher	in	the	
high‐diameter	 class	 (>	70	cm)	 in	Africa,	 in	 intermediate‐diameter	
classes	(between	30	and	70	cm)	in	America,	and	is	equally	distrib‐
uted	among	the	different	diameter	classes	in	Asia	(Figure	6c,d).

(10)
AGB=0.0735× (Dg20H20WD20)

1.1332
(

rRMSE=0.179; R2=0.85;Akaike Criterion=−260.18
)

(11)
AGB=0.195× (Dg20H20WD20)

(

rRMSE=0.177; R2=0.85; AIC=−195
)

F I G U R E  4  Quality	of	the	prediction	of	aboveground	biomass	(AGB)	from	largest	trees	plot	metrics.	Variation	of	the	relative	root	mean	
square	error	(rRMSE)	of	the	prediction	of	AGB	from	i	largest	trees	versus	the	cumulative	number	of	largest	trees	(a)	and	detailed	prediction	
of	AGB	from	plot	metrics	of	the	20	largest	trees	(b).	Results	are	shown	for	the	867	plots	in	the	three	continents,	coloured	orange,	green	and	
blue	for	America,	Africa	and	Asia,	respectively.	The	regression	line	of	the	model	is	shown	as	a	continuous	black	line,	and	the	dashed	black	
line	shows	a	1:1	relationship.	The	figure	shows	an	unbiased	prediction	of	AGB	across	the	867	plots,	with	slight	but	significant	differences	
between	the	three	continents
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4  | DISCUSSION

4.1 | The largest trees, convergences and 
divergences between continents

Sampling	a	few	largest	trees	per	hectare	generally	allows	an	unbi‐
ased	prediction	of	four	key	descriptors	of	forest	structures	across	

the	 tropics.	There	 is	generally	no	 improvement	 in	predicting	bio‐
mass,	quadratic	mean	diameter,	Lorey’s	height	(HBA)	or	community	
wood	density	beyond	the	first	10–20	largest	trees	(Figures	2,3	and	
3a).	But	when	a	forest	plot	presents	an	abundant	number	of	large	
trees	(Figure	5d),	increasing	the	number	of	trees	sampled	does	im‐
prove	the	accuracy	of	the	model.	This	is	attributable	to	the	fact	that	

F I G U R E  5  Predicted	versus	observed	residuals	of	aboveground	biomass	predicted	from	the	20	largest	trees.	Residuals	are	explored	
at	three	different	levels:	(a)	plot,	(b)	site	(without	considering	the	diameter	structure	as	an	explanatory	variable),	(c)	site	(considering	the	
diameter	structure),	and	(d)	along	the	stem	density	of	medium‐sized	trees.	America,	Africa	and	Asia	are	coloured	in	orange,	green	and	blue,	
respectively.	The	panels	show	a	good	prediction	of	residuals	in	(a)	and	(b),	driven	by	stem	density,	and	a	less	biased	prediction	in	(c),	driven	by	
the	diameter	structure.	Variances	of	observed	residuals	are	also	well	explained	by	the	stem	density	of	medium‐sized	trees	(d),	which	mainly	
drive	the	first	axis	of	the	principal	components	analysis
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the	higher	the	total	AGB	in	a	plot,	the	lower	the	proportion	of	total	
AGB	 encompassed	 by	 the	 largest	 trees.	 This	 is	 particularly	 true	
for	BA,	for	which	rRMSE	continues	to	decrease	up	to	100	largest	
trees	(Figure	2a).	In	contrast,	Lorey’s	height	predictions	are	altered	
when	 a	 large	 number	 of	 trees	 are	 included	 (Figure	 2c;	 i.e.,	when	
smaller,	 often	 suppressed,	 trees	 draw	 the	 average	 down;	 Farrior,	
Bohlman,	Hubbell,	&	Pacala,	2016).	This	might	explain	why	the	pre‐
diction	of	AGB	does	not	mirror	that	of	basal	area	(Figures	2,3b	and	
3a)	 and	 suggests	 that	 the	 number	 of	 largest	 trees	 should	 be	 set	
independently	 from	 each	 predictor	 considered.	 Interestingly,	 the	
evolution	of	 relative	error	 in	AGB	prediction	as	a	 function	of	 the	
number	of	largest	trees	considered	does	not	follow	the	same	path	
between	continents.	For	instance,	the	error	of	prediction	saturates	
more	quickly	in	Africa	and	Asia	than	in	America.	Investigation	of	re‐
siduals	showed	that	the	diameter	structure	(Figure	5c;	Supporting	
Information	Figure	3b),	and	 in	particular,	 the	number	of	medium‐
sized	 trees	 (Figure	5d),	 drives	 variability	 in	AGB	predictions.	 It	 is	
therefore	 not	 surprising	 to	 see	 that	 in	 our	 dataset	 the	 site	 with	

higher	levels	of	underestimations	is	the	one	with	the	highest	num‐
ber	of	medium‐sized	trees,	which	 is	found	in	Asia	 in	the	Western	
Ghats	of	India.

The	good	performance	of	models	based	on	the	20	largest	trees	
in	predicting	Lorey’s	height	and	community	wood	density	at	the	site	
level	was	not	surprising.	Both	metrics	were	weighted	by	basal	area,	
driven de facto	by	the	largest	trees.	Nonetheless,	their	consistency	
across	sites	and	continents	was	not	expected,	which	emphasize	the	
generality	of	our	approach.

The	predictability	of	plot‐level	forest	structure	metrics	from	the	
largest	trees	implies	that	characteristics	of	smaller	trees	do	not	vary	
in	a	completely	independent	manner	from	those	of	the	larger	trees.	
For	example,	plots	where	the	largest	trees	have	a	low	basal	area	tend	
to	have	low	plot‐level	basal	area	(Figure	3a),	meaning	that	the	total	
size	of	the	smaller	trees	is	sufficiently	constrained	that	it	does	not	
compensate	for	the	small	size	of	the	largest	trees.	Such	constraints	
could	 arise	 through	 size–frequency	 distributions	 being	 set	 by	 al‐
lometric	 scaling	 rules	 (Enquist,	West,	&	Brown,	2009)	or	 could	be	

TA B L E  1  Weight	of	each	variable	retained	for	the	explanation	of	aboveground	biomass	residuals

Level of residual Parameter Weight

Plot

Stem	density 79

Continent 18

Lorey’s	height 1

Major	soil	types 1

Temperature 1

Wood	density	weighted	by	the	basal	area 0

Rainfall 0

Site	without	diametric	structure

Stem	density 54

Continent 28

Wood	density	weighted	by	the	basal	area 11

Rainfall 3

Major	soil	types 3

Temperature 2

Lorey’s	height 0

Site	with	diametric	structure

PCA	axis	1 69

Lorey’s	height 23

Rainfall 3

Major	soil	types 3

Continent 1

Temperature 1

Wood	density	weighted	by	the	basal	area 0

PCA	axis	2 0

Note.	Weights	are	calculated	as	a	type	ll	sum	of	squares,	which	measures	the	decreased	residual	sum	of	squares	attributable	to	an	added	variable	once	
all	the	other	variables	have	been	introduced	into	the	model.	Results	are	shown	for	the	exploration	of	residuals	at	the	plot	and	at	the	site	level,	with	and	
without	consideration	of	the	diameter	structure.	Weights	are	dominated	by	structural	variables,	and	in	particular,	the	stem	density	and	the	diameter	
structure.	Height,	wood	density	and	continent	have	also	a	non‐negligible	influence	on	residuals.	PCA	=	principal	components	analysis.
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attributable	to	the	largest	trees	responding	in	the	same	way	as	the	
remaining	smaller	trees	to	environmental	drivers.

Despite	 the	 general	 consistency	 of	 these	 relationships	 across	
continents,	slight	differences	are	evident	when	comparing	the	pan‐
tropical	 model	 residuals	 across	 continents	 (Figure	 6;	 Supporting	

Information	 Figure	 4).	 These	 differences	 indicate	 biogeographical	
variation	 in	 forest	 structure.	 In	 America,	 our	 pan‐tropical	 model	
tends	slightly	to	underestimate	basal	area	(mean:	−5%)	and	overesti‐
mate	Lorey’s	height	(mean:	+3%)	(Supporting	Information	Figure	4).	
This	suggests	that	large	trees	make	up	a	smaller	proportion	of	basal	

F I G U R E  6  Comparison	across	continents	of	aboveground	biomass	(AGB)	prediction	per	site	and	their	contribution	to	different	shares	
of	the	diameter	structure.	Africa,	Asia	and	America	are	coloured	in	green,	blue	and	orange,	respectively.	(a)	The	distribution	of	the	residuals	
of	pan‐tropical	AGB	prediction	from	the	20	largest	trees	shows	that	predictions	are	slightly	overestimated	in	Africa	(+3%),	and	slightly	
underestimated	in	Asia	(−3%)	and	America	(−5%).	(b)	The	proportion	of	AGB	in	the	20	largest	trees	is	highest	in	Africa	(48%),	followed	by	Asia	
(40%)	and	America	(35%).	(c–f)	The	decomposition	across	four	diameter	classes	[i.e.,	10–30,	30–50,	50–70	and	>	70	cm	diameter	at	breast	
height	(DBH)]	of	their	relative	share	of	the	total	biomass	shows	that	most	of	the	biomass	is	found	in	the	large	trees	in	Africa	and	in	the	small	
to	medium	trees	in	America.	Asia	presents	a	more	balanced	distribution	of	biomass	across	the	diameter	structure
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area	in	America	and	that	for	a	given	diameter	we	find	higher	trees	
(Supporting	Information	Figure	2),	which	confirms	that	the	shape	of	
height–diameter	allometries	varies	between	continents	(Banin	et	al.,	
2012;	 Sullivan	 et	 al.,	 2018).	 In	Africa,	 large	 trees	 (i.e.,	 diameter	 at	
breast	height	>	70	cm)	 are	more	abundant	 and	account	 for	 a	 large	
fraction	of	plot	biomass	 (Figure	6f).	This	 supports	previous	obser‐
vations	 that	African	 forests	 are	 characterized	 by	 fewer	 but	 larger	
stems	(Feldpausch	et	al.,	2012;	Lewis	et	al.,	2013),	whereas	forests	
in	the	Americas	have	more	stems	but	generally	have	lower	biomass	
(Sullivan	et	al.,	2017).	In	Asia,	the	distribution	of	the	biomass	across	
diameter	classes	appears	more	balanced	(Figure	6c–f).	Such	differ‐
ences	in	forest	structure,	albeit	limited,	suggest	that	tropical	forests	
differ	between	continents	in	terms	of	dynamics,	carbon	cycling,	re‐
sponse	and	feedback	to	climate	and	resilience	to	external	 forcings	
(e.g.,	climate	change,	forest	degradation	and	deforestation).

Interestingly,	although	a	recent	global	phylogenetic	classification	
of	tropical	forests	groups	American	with	African	forests	versus	Asian	
forests	 (Slik	 et	 al.,	 2018),	 our	 study	 of	 forest	 structure	 properties	
tends	more	to	single	out	American	forests,	and	in	particular,	to	high‐
light	 the	contrast	between	African	and	American	 forests.	Although	
this	deserves	further	investigation,	it	might	reveal	the	lack	of	a	close	
relationship	between	forest	structure	properties	and	phylogenic	sim‐
ilarity,	which	echoes	recent	results	on	the	absence	of	a	relationship	
between	tropical	forest	diversity	and	biomass	(Sullivan	et	al.,	2017).

4.2 | Largest trees: A gateway to global 
monitoring of tropical forests

Revealing	the	predictive	capacity	held	by	the	largest	trees,	our	results	
constitute	 a	 major	 step	 forwards	 to	monitor	 forest	 structures	 and	
biomass	stocks.	The	largest	trees	in	tropical	forests	can	therefore	be	
used	to	make	accurate	predictions	of	various	ground‐measured	prop‐
erties	(i.e.,	the	quadratic	mean	diameter,	the	basal	area,	Lorey’s	height	
and	community	wood	density),	whereas	previous	work	has	predicted	
only	biomass	‘estimates’	(e.g.,	Bastin	et	al.,	2015;	Slik	et	al.,	2013).	The	
advantages	of	our	approach	are	as	follows:	(a)	it	allows	us	to	describe	
forest	structure	 independently	of	any	biomass	allometric	model;	 (b)	
it	allows	us	to	integrate	environmentally	based	variations	in	the	D–H 
relationship,	known	to	vary	locally	(Feldpausch	et	al.,	2011;	Kearsley	
et	al.,	2013);	and	(c)	it	is	also	relatively	insensitive	to	differences	in	flo‐
ristic	composition	and	community	wood	density	(Poorter	et	al.,	2015).

Furthermore,	the	‘largest	trees’	models	were	developed	for	each	
plot‐level	metric	and	for	any	number	of	largest	trees.	Thus,	they	do	
not	rely	on	any	arbitrary	threshold	of	tree	diameter.	Note	that	the	
optimal	number	of	largest	trees	to	be	measured	(i.e.,	20)	was	set	for	
demonstration	and	can	vary	depending	on	the	needs	and	capacities	
of	each	country	or	project	(see	Supporting	Information	Table	2).	In	
the	 same	way,	 local	models	 could	 integrate	 locally	developed	bio‐
mass	models,	when	available.	Consequently	our	approach:	(a)	can	be	
used	in	young	or	regenerating	unmanaged	forests	with	a	low	‘largest	
tree’	 diameter	 threshold;	 and	 (b)	 is	 compatible	with	 recent	RS	 ap‐
proaches	able	to	single	out	canopy	trees	and	describe	their	crown	
and	height	metrics	(Coomes	et	al.,	2017;	Ferraz	et	al.,	2016).

4.3 | Aboveground biomass model from the largest 
trees: A multiple opportunity

Globally,	the	NLT	model	for	the	20	largest	trees	allows	plot	biomass	
to	be	predicted	with	17.9%	error.	This	 result	 is	a	pan‐tropical	vali‐
dation	of	 results	obtained	 in	Central	Africa	 (Bastin	et	al.,	2015).	 It	
opens	new	perspectives	for	cost‐effective	methods	to	monitor	for‐
est	structures	and	carbon	stocks	through	largest	trees	metrics	(i.e.,	
metrics	of	objects	directly	intercepted	by	RS	products).

Developing	countries	willing	to	implement	Reduction	of	Emissions	
from	Deforestation	 and	 Forest	Degradation	 (REDD+)	 activities	will	
also	 report	on	 their	carbon	emissions	and	develop	a	national	 refer‐
ence	level	(IPCC,	2006;	Maniatis	&	Mollicone,	2010).	However,	most	
tropical	 countries	 lack	 the	 capacity	 to	 assume	 multiple,	 exhaus‐
tive	 and	 costly	 forest	 carbon	 inventories	 (Romijn,	Herold,	Kooistra,	
Murdiyarso,	&	Verchot,	2012).	By	measuring	only	a	 few	 large	 trees	
per	hectare,	our	 results	 show	 that	 it	 is	possible	 to	obtain	unbiased	
estimates	of	aboveground	carbon	stocks	in	a	time‐	and	cost‐efficient	
manner.	Assuming	that	400–600	trees	with	D	>	10	cm	are	measured	
in	a	typical	1‐ha	sample	plot,	monitoring	only	20	trees	is	a	significant	
improvement.	Although	finding	the	20	largest	trees	in	a	plot	of	several	
hundred	individuals	requires	evaluating	>	20	trees,	in	practice,	a	con‐
servative	diameter	threshold	could	be	defined	to	ensure	that	the	20	
largest	trees	are	sampled.	An	alternative	could	also	be	found	in	the	de‐
velopment	of	a	relascope‐based	approach	adapted	to	detection	of	the	
largest	trees	in	tropical	forests.	Using	such	approach	would	facilitate	
rapid	field	sampling	in	extensive	areas	to	produce	large‐scale	AGB	es‐
timates.	Those	could	fulfil	the	needs	for	calibration	and	validation	of	
current	and	forthcoming	space	missions	focused	on	AGB.

Our	 findings	 also	 point	 towards	 the	 potential	 effectiveness	 of	
using	RS	 techniques	 to	characterize	canopy	 trees	 for	 inferring	 the	
attributes	of	entire	forest	stands.	Remote	sensing	data	could	be	used	
for	direct	measurement	(e.g.,	tree‐level	metrics,	such	as	height,	crown	
width	and	crown	height)	of	the	largest	trees	as	a	potential	alterna‐
tive	to	indirect	development	of	complex	metrics	(e.g.,	mean	canopy	
height,	texture)	used	to	extrapolate	forest	properties.	Although	the	
use	of	a	single‐tree	approach	has	shown	some	limitations	to	extrap‐
olate	plot	metrics	(Coomes,	Šafka,	Shepherd,	Dalponte,	&	Holdaway,	
2018),	 we	 have	 yet	 to	 investigate	 its	 potential	 to	 identify	 largest	
trees.	Some	further	refinements	are	needed,	but	most	of	the	tools	
required	 to	 develop	 ‘largest	 trees’	models	 are	 readily	 available.	 In	
particular,	Ferraz	et	al.	(2016)	developed	an	automated	procedure	to	
locate	single	trees	based	on	airborne	LiDAR	data,	to	measure	their	
height	 and	 crown	 area.	 Crown	 area	 could	 then	 be	 linked	 to	 basal	
area,	because	the	logarithm	of	crown	area	is	consistently	correlated,	
with	a	slope	of	1.2–1.3,	to	the	logarithm	of	tree	diameter	across	the	
tropics	(Blanchard	et	al.,	2016).	Regarding	wood	density,	hyperspec‐
tral	signature	and	high‐resolution	topography	offers	a	promising	way	
to	assess	functional	traits	remotely	(e.g.,	Asner	et	al.,	2017;	Jucker	et	
al.,	2018),	which	could	potentially	provide	proxies	of	wood	density.	
Alternative	approaches	could	focus	on	the	development	of	plot‐level	
AGB	prediction	by	replacing	the	basal	area	of	the	largest	trees	with	
their	crown	metrics.	Although	the	measurement	of	crown	areas	has	
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yet	to	be	generalized	when	inventorying	plots,	several	biomass	allo‐
metric	models	already	partition	trunk	and	crown	mass	 (Coomes	et	
al.,	2017;	Jucker	et	al.,	2017;	Ploton	et	al.,	2016).

The	main	limitation	of	our	approach	lies	in	the	limited	inference	
that	 can	 be	 made	 on	 the	 understorey	 and	 sub‐canopy	 trees.	We	
show	that	most	of	the	remaining	variance	is	explained	by	variations	
in	diameter	 structures,	and	 in	particular,	 in	 the	 total	 stem	density.	
Interestingly,	stem	density	was	generally	identified	as	a	poor	predic‐
tor	of	plot	biomass	in	tropical	forests	(Lewis	et	al.,	2013;	Slik	et	al.,	
2010).	However,	our	results	show	that	stem	density	explains	most	of	
the	remaining	variance	(Supporting	Information	Table	S1).	This	sug‐
gests	that,	in	addition	to	trying	to	understand	large‐scale	variations	
in	large	trees	and	other	plot	metrics	that	can	be	quantified	directly	
from	RS,	we	should	also	put	more	effort	into	understanding	variation	
in	smaller	trees,	which	mainly	drives	total	stem	density	and	the	total	
floristic	diversity.	Smaller	trees	are	also	essential	to	characterize	for‐
est	dynamics	and	understand	changes	in	carbon	stocks.	Several	op‐
tions	are	nonetheless	possible	from	RS,	considering	the	variation	in	
LiDAR	point	density	below	the	canopy	layer	(D’Oliveira,	Reutebuch,	
McGaughey,	&	Andersen,	2012),	the	distribution	of	leaf	area	density	
(Stark	et	al.,	2015,	2012	;	Tang	&	Dubayah,	2017;	Vincent	et	al.,	2017)	
or	the	use	of	multitemporal	LiDAR	data	to	obtain	information	on	for‐
est	gap	generation	dynamics	and,	consequently,	on	forest	diameter	
structure	(Farrior	et	al.,	2016;	Kellner,	Clark,	&	Hubbell,	2009).

4.4 | Large trees in degraded forests

If	large	trees	are	a	key	feature	of	unmanaged	forests,	they	are	con‐
spicuously	absent	from	managed	or	degraded	forests.	Indeed,	large	
trees	are	targeted	by	selective	or	illegal	logging	and	are	the	first	to	
disappear	or	to	suffer	from	incidental	damage	when	tropical	forests	
are	exploited	for	 timber	 (Sist,	Mazzei,	Blanc,	&	Rutishauser,	2014).	
The	 loss	 of	 the	 largest	 trees	 drastically	 changes	 forest	 structures	
and	diameter	distributions,	and	their	loss	is	likely	to	counteract	the	
consistency	 in	 forest	 structures	 observed	 throughout	 this	 study.	
Understanding	how,	or	whether,	managed	forests	deviate	from	our	
model	 predictions	 could	 help	 to	 characterize	 forest	 degradation,	
which	accounts	for	a	large	fraction	of	carbon	loss	worldwide	(Baccini	
et	al.,	2017),	acknowledging	that	rapid	post‐disturbance	biomass	re‐
covery	(Rutishauser	et	al.,	2015)	will	remain	hard	to	capture.

4.5 | Conclusion: Towards improved estimates of 
tropical forest biomass

The	acquisition,	accessibility	and	processing	capabilities	of	RS	data	
with	 a	 very	 high	 spatial,	 spectral	 and	 temporal	 resolution	 has	 in‐
creased	exponentially	in	recent	years	(Bastin	et	al.,	2017).	However,	
to	develop	accurate	global	maps	we	will	have	to	obtain	a	larger	num‐
ber	of	field	plots	and	develop	new	ways	to	use	RS	data.	Our	results	
provide	a	 step	 forwards	 for	both	by:	 (a)	 drastically	decreasing	 the	
number	of	 individual	 tree	measurements	required	to	obtain	an	ac‐
curate,	 yet	 less	 precise,	 estimate	of	 plot	 biomass;	 and	 (b)	 opening	

the	way	to	direct	measurement	of	plot	metrics	measured	from	RS	to	
estimate	plot	biomass.

As	highlighted	by	Clark	and	Kellner	(2012),	new	biomass	allo‐
metric	models	relating	plot‐level	biomass	measured	from	destruc‐
tive	 sampling	and	plot‐level	metrics	measured	 from	RS	products	
should	be	developed,	as	an	alternative	to	current	tree‐level	allo‐
metric	models.	Such	an	effort	will	greatly	reduce	operational	costs	
and	 uncertainties	 surrounding	 terrestrial	 carbon	 estimates	 and,	
consequently,	will	help	developing	countries	 in	 the	development	
of	 national	 forest	 inventories	 and	 aid	 the	 scientific	 community	
in	 better	 understanding	 the	 effect	 of	 climate	 change	 on	 forest	
ecosystems.
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